
Application Note 37

Working with Dates and
Times

Introduction
Date and time information can be represented in a variety of ways. For example, it can be stored as the number of
seconds that have elapsed since a know time, or as separate fields for seconds, minutes, hours, days, etc. This
application note describes an implementation of the Unix Time format for working with date and time values. It also
shows how the TIMESET, TIMELONG and TICKLONG instructions can be used for keeping track of elapsed time
and time delays.

Unix Time
Unix Time is a method of storing time as a 32-bit value specifying the number of seconds that have elapsed since
midnight UTC of January 1, 1970. It has been widely used on Unix operating systems and many other systems, and
is usually part of the standard libraries provided with C compilers. There are a number of free web-based utilities
available for converting between Unix Time and readable date/time strings. Unix time can be easily implemented on
the uM-FPU V3 chip since there’s comprehensive support for 32-bit integer instructions. The examples provided
with this application note handle Unix Time values from January 1, 1970 00:00:00 to January 19, 2038 03:14:07.

unixTime.fpu Functions
A set of uM-FPU V3.1 user-defined functions have been implemented to convert between individual date and time
fields and 32-bit Unix Time values. Functions to convert date and time fields to text strings are also included. The
functions in unixTime.fpu use the following registers:

Register Range of 32-bit Integer Values
Name Description Min Max
tm_sec seconds 0 59
tm_min minutes 0 59
tm_hour hours 0 23
tm_mday day of month 1 31
tm_mon months since January 0 11 (note: not 1 to 12)
tm_year years since 1900 70 138
tm_wday days since Sunday 0 6
tm_yday days since January 1 0 365
tm_unix 32-bit Unix Time value 0 2147483647

dateToUnix
This function converts individual date and time fields to a 32-bit Unix Time value.
Input:

register tm_sec 32-bit integer seconds
register tm_min 32-bit integer minutes
register tm_hour 32-bit integer hour
register tm_mday 32-bit integer day of month
register tm_mon 32-bit integer months since January

Micromega Corporation 1 Revised 2007-07-23

Micromega Corporation 2 AN37: Working with Dates and Times

Micromega Corporation 3 AN37: Working with Dates and Times

register tm_year 32-bit integer years since 1970
Output:

register tm_unix 32-bit integer Unix Time

unixToDate
This function converts a 32-bit Unix Time value to individual date and time fields.
Input:

register tm_unix 32-bit integer Unix Time
Output:

register tm_sec 32-bit integer seconds
register tm_min 32-bit integer minutes
register tm_hour 32-bit integer hour
register tm_mday 32-bit integer day of month
register tm_mon 32-bit integer months since January
register tm_year 32-bit integer years since 1970
register tm_wday 32-bit integer days since Sunday
register tm_yday 32-bit integer days since January 1
register tm_unix 32-bit integer Unix Time

getDateTimeStamp
This function converts individual date and time fields to a text string that is stored in the FPU string buffer.
The format of the string is YYYY-MM-DD HH:MM:SS.
Input:

register tm_sec 32-bit integer seconds
register tm_min 32-bit integer minutes
register tm_hour 32-bit integer hour
register tm_mday 32-bit integer day of month
register tm_mon 32-bit integer months since January
register tm_year 32-bit integer years since 1970

Output:
string buffer string YYYY-MM-DD HH:MM:SS

e.g. 2007-07-19 09:16:20

getDateString
This function converts individual date fields to a text string that is stored in the FPU string buffer. The
format of the string is Www, Mmm DD/YY.
Input:

register tm_sec 32-bit integer seconds
register tm_min 32-bit integer minutes
register tm_hour 32-bit integer hour
register tm_mday 32-bit integer day of month
register tm_mon 32-bit integer months since January
register tm_year 32-bit integer years since 1970

Output:
string buffer string www, mmm DD/YY

e.g. Thu, Jul 19, 2007

insertDigits
Converts an integer value to a two-digit (leading zero) string and stores it at the current string selection point.
Input:

Micromega Corporation 2 AN37: Working with Dates and Times

Micromega Corporation 3 AN37: Working with Dates and Times

Micromega Corporation 4 AN37: Working with Dates and Times

register 1 32-bit integer 0 to 99
Output:

string selection string nn
e.g. 19

insertWeekDay
Converts the tm_wday value to a three character abbreviation for the weekday and stores it at the current
string selection point.
Input:

register tm_wday 32-bit integer days since Sunday
Output:

string selection string www
e.g. Thu

insertMonth
Converts the tm_mon value to a three character abbreviation for the month and stores it at the current string
selection point.
Input:

register tm_mon 32-bit integer months since January
Output:

string selection string mmm
e.g. Jul

Using the TIMESET, TIMELONG and TICKLONG instructions
The uM-FPU V3 chip has two 32-bit elapsed time counters. One counter tracks elapsed time in seconds, and the
other tracks elapsed time in milliseconds. By default, the time counters are disabled, but they can be enabled using
the TIMESET instruction. The TIMESET instruction sets the initial value of the seconds counter, clears the
milliseconds counter, and enables the counters. The TIMELONG instruction is used to read the seconds counter, and
the TICKLONG instruction is used to read the milliseconds counter. See the uM-FPU V3.1 Instruction Set for details.

The millisecond counter is used for measuring small time intervals. It can run for 4294967.295 seconds (~49.7 days)
before it rolls over to zero. The seconds counter can be used for longer time periods, or to keep track of date and
time. For example, the seconds counter could be loaded with the Unix Time value. However, it should be noted, that
the elapsed time counters run from the internal clock. This internal clock frequency can vary up to 0.1% from the
specified frequency, which is not significant for most operations, but is not accurate enough for keeping track of time
over an extended period. For applications that require precise time over an extended period, the counter could be
periodically reset (e.g. with a time signal from a GPS receiver, or other time source), or an external realtime clock
chip could be used to keep track of the time, while the FPU is used to work with time values.

Elapsed Time Calculations
Elapsed time calculations can be done simply by subtracting two time values. For example, the following code
calculates the elapsed time in milliseconds for a section of code. Note: elapsed time in seconds can be calculated by
replacing the TICKLONG instruction with TIMELONG.

SELECTA, 1 ; get start time
TICKLONG
LSET0

(code sequence being timed)
SELECTA, 2 ; get end time
TICKLONG

Micromega Corporation 3 AN37: Working with Dates and Times

Micromega Corporation 4 AN37: Working with Dates and Times

LSUB, 1 ; calculate elapsed time

Time Delays
Time delays can be implemented in uM-FPU user-defined functions. The following routine assumes the timer is
already running, and register 1 specifies the number of milliseconds to delay. Note: a time delay in seconds can be
implemented by replacing the TICKLONG instruction with TIMELONG.

SELECTA, 1 ; get current time
TICKLONG
LADD0 ; add the delay amount

_wait:
TICKLONG ; wait until current time >= delay time
LUCMP0
BRA, GT, _wait

The example shown above assumes that the counters will not rollover to zero during the delay loop. Fot the
milliseconds timer this will occur approximately every 49.7 days. If this is a concern, it can be avoided by
periodically resetting the timers, or always resetting the timer before a time delay.

Additional Files
There are additional files located on the Micromega website that accompany this application note. They include:

unixTime.fpu contains uM-FPU V3.1 user-defined functions
unixTime.bs2 Basic Stamp demo application
unixTime.bas PICAXE demo application

Before running the demo application, the user-defined functions in unixTime.fpu must be programmed into the uM-
FPU V3.1 chip. This can be done using the uM-FPU V3 IDE software.

Further Information
See the Micromega website (http://www.micromegacorp.com) for additional information regarding the uM-FPU
V3.1 floating point coprocessor, including:

uM-FPU V3.1 Datasheet
uM-FPU V3.1 Instruction Set
Using the uM-FPU V3 Integrated Development Environment (IDE)

